000 03372nam a22004935i 4500
001 978-3-642-31046-1
003 DE-He213
005 20140220082849.0
007 cr nn 008mamaa
008 121025s2013 gw | s |||| 0|eng d
020 _a9783642310461
_9978-3-642-31046-1
024 7 _a10.1007/978-3-642-31046-1
_2doi
050 4 _aQA71-90
072 7 _aPDE
_2bicssc
072 7 _aCOM014000
_2bisacsh
072 7 _aMAT003000
_2bisacsh
082 0 4 _a004
_223
100 1 _aBader, Michael.
_eauthor.
245 1 0 _aSpace-Filling Curves
_h[electronic resource] :
_bAn Introduction with Applications in Scientific Computing /
_cby Michael Bader.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXIII, 278 p. 357 illus., 323 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTexts in Computational Science and Engineering,
_x1611-0994 ;
_v9
505 0 _aTwo Motivating Examples -- How to Construct Space-Filling Curves -- Grammar-Based Description of Space-Filling Curves -- Arithmetic Representation of Space-Filling Curves -- Approximating Polygons -- Sierpinski Curves -- Further Space-Filling Curves -- Space-Filling Curves in 3D -- Refinement Trees and Space-Filling Curves -- Parallelisation with Space-Filling Curves -- Locality Properties of Space-Filling Curves -- Sierpinski Curves on Triangular and Tetrahedral Meshes -- Case Study: Cache Efficient Algorithms for Matrix Operations -- Case Study: Numerical Simulation on Spacetree Grids Using Space-Filling Curves.- Further Applications of Space-Filling Curves.- Solutions to Selected Exercises.- References -- Index .
520 _a­The present book provides an introduction to using space-filling curves (SFC) as tools in scientific computing. Special focus is laid on the representation of SFC and on resulting algorithms. For example, grammar-based techniques are introduced for traversals of Cartesian and octree-type meshes, and arithmetisation of SFC is explained to compute SFC mappings and indexings. ­The locality properties of SFC are discussed in detail, together with their importance for algorithms. Templates for parallelisation and cache-efficient algorithms are presented to reflect the most important applications of SFC in scientific computing. Special attention is also given to the interplay of adaptive mesh refinement and SFC, including the structured refinement of triangular and tetrahedral grids. For each topic, a short overview is given on the most important publications and recent research activities.
650 0 _aMathematics.
650 0 _aComputer science.
650 0 _aAlgorithms.
650 1 4 _aMathematics.
650 2 4 _aComputational Science and Engineering.
650 2 4 _aAlgorithms.
650 2 4 _aApplications of Mathematics.
650 2 4 _aMath Applications in Computer Science.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642310454
830 0 _aTexts in Computational Science and Engineering,
_x1611-0994 ;
_v9
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-31046-1
912 _aZDB-2-SMA
999 _c97056
_d97056