000 | 03372nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-642-31046-1 | ||
003 | DE-He213 | ||
005 | 20140220082849.0 | ||
007 | cr nn 008mamaa | ||
008 | 121025s2013 gw | s |||| 0|eng d | ||
020 |
_a9783642310461 _9978-3-642-31046-1 |
||
024 | 7 |
_a10.1007/978-3-642-31046-1 _2doi |
|
050 | 4 | _aQA71-90 | |
072 | 7 |
_aPDE _2bicssc |
|
072 | 7 |
_aCOM014000 _2bisacsh |
|
072 | 7 |
_aMAT003000 _2bisacsh |
|
082 | 0 | 4 |
_a004 _223 |
100 | 1 |
_aBader, Michael. _eauthor. |
|
245 | 1 | 0 |
_aSpace-Filling Curves _h[electronic resource] : _bAn Introduction with Applications in Scientific Computing / _cby Michael Bader. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_aXIII, 278 p. 357 illus., 323 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aTexts in Computational Science and Engineering, _x1611-0994 ; _v9 |
|
505 | 0 | _aTwo Motivating Examples -- How to Construct Space-Filling Curves -- Grammar-Based Description of Space-Filling Curves -- Arithmetic Representation of Space-Filling Curves -- Approximating Polygons -- Sierpinski Curves -- Further Space-Filling Curves -- Space-Filling Curves in 3D -- Refinement Trees and Space-Filling Curves -- Parallelisation with Space-Filling Curves -- Locality Properties of Space-Filling Curves -- Sierpinski Curves on Triangular and Tetrahedral Meshes -- Case Study: Cache Efficient Algorithms for Matrix Operations -- Case Study: Numerical Simulation on Spacetree Grids Using Space-Filling Curves.- Further Applications of Space-Filling Curves.- Solutions to Selected Exercises.- References -- Index . | |
520 | _aThe present book provides an introduction to using space-filling curves (SFC) as tools in scientific computing. Special focus is laid on the representation of SFC and on resulting algorithms. For example, grammar-based techniques are introduced for traversals of Cartesian and octree-type meshes, and arithmetisation of SFC is explained to compute SFC mappings and indexings. The locality properties of SFC are discussed in detail, together with their importance for algorithms. Templates for parallelisation and cache-efficient algorithms are presented to reflect the most important applications of SFC in scientific computing. Special attention is also given to the interplay of adaptive mesh refinement and SFC, including the structured refinement of triangular and tetrahedral grids. For each topic, a short overview is given on the most important publications and recent research activities. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aComputer science. | |
650 | 0 | _aAlgorithms. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aComputational Science and Engineering. |
650 | 2 | 4 | _aAlgorithms. |
650 | 2 | 4 | _aApplications of Mathematics. |
650 | 2 | 4 | _aMath Applications in Computer Science. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783642310454 |
830 | 0 |
_aTexts in Computational Science and Engineering, _x1611-0994 ; _v9 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-31046-1 |
912 | _aZDB-2-SMA | ||
999 |
_c97056 _d97056 |