000 03526nam a22005655i 4500
001 978-1-4614-8042-6
003 DE-He213
005 20140220082831.0
007 cr nn 008mamaa
008 130805s2013 xxu| s |||| 0|eng d
020 _a9781461480426
_9978-1-4614-8042-6
024 7 _a10.1007/978-1-4614-8042-6
_2doi
050 4 _aQA613-613.8
050 4 _aQA613.6-613.66
072 7 _aPBMS
_2bicssc
072 7 _aPBPH
_2bicssc
072 7 _aMAT038000
_2bisacsh
082 0 4 _a514.34
_223
100 1 _aSergeyev, Yaroslav D.
_eauthor.
245 1 0 _aIntroduction to Global Optimization Exploiting Space-Filling Curves
_h[electronic resource] /
_cby Yaroslav D. Sergeyev, Roman G. Strongin, Daniela Lera.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aX, 125 p. 32 illus., 30 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Optimization,
_x2190-8354
505 0 _a 1. Introduction -- 2. Approximations to Peano curves -- 3. Global optimization algorithms using curves to reduce dimensionality of the problem -- 4. Ideas for acceleration -- 5. A brief conclusion -- References.
520 _aIntroduction to Global Optimization Exploiting Space-Filling Curves provides an overview of classical and new results pertaining to the usage of space-filling curves in global optimization.  The authors look at a family of derivative-free numerical algorithms applying space-filling curves to reduce the dimensionality of the global optimization problem; along with a number of unconventional ideas, such as adaptive strategies for estimating Lipschitz constant, balancing global and local information to accelerate the search. Convergence conditions of the described algorithms are studied in depth and theoretical considerations are illustrated through numerical examples. This work also contains a code for implementing space-filling curves that can be used for constructing new global optimization algorithms. Basic ideas from this text can be applied to a number of problems including problems with multiextremal and partially defined constraints and non-redundant parallel computations can be organized. Professors, students, researchers, engineers, and other professionals in the fields of pure mathematics, nonlinear sciences studying fractals, operations research, management science, industrial and applied mathematics, computer science, engineering, economics, and the environmental sciences will find this title useful .  
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aComputer software.
650 0 _aNumerical analysis.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aMathematics.
650 2 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
650 2 4 _aOperations Research, Management Science.
650 2 4 _aMathematical Software.
650 2 4 _aNumerical Analysis.
650 2 4 _aAlgebraic Geometry.
700 1 _aStrongin, Roman G.
_eauthor.
700 1 _aLera, Daniela.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461480419
830 0 _aSpringerBriefs in Optimization,
_x2190-8354
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-8042-6
912 _aZDB-2-SMA
999 _c96023
_d96023