000 02578nam a22004695i 4500
001 978-4-431-53938-4
003 DE-He213
005 20140220083820.0
007 cr nn 008mamaa
008 110521s2011 ja | s |||| 0|eng d
020 _a9784431539384
_9978-4-431-53938-4
024 7 _a10.1007/978-4-431-53938-4
_2doi
050 4 _aQA440-699
072 7 _aPBM
_2bicssc
072 7 _aMAT012000
_2bisacsh
082 0 4 _a516
_223
100 1 _aAomoto, Kazuhiko.
_eauthor.
245 1 0 _aTheory of Hypergeometric Functions
_h[electronic resource] /
_cby Kazuhiko Aomoto, Michitake Kita.
264 1 _aTokyo :
_bSpringer Japan :
_bImprint: Springer,
_c2011.
300 _aXVI, 320 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _a1 Introduction: the Euler-Gauss Hypergeometric Function -- 2 Representation of Complex Integrals and Twisted de Rham Cohomologies -- 3 Hypergeometric functions over Grassmannians -- 4 Holonomic Difference Equations and Asymptotic Expansion References Index.
520 _aThis book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aGeometry.
650 1 4 _aMathematics.
650 2 4 _aGeometry.
650 2 4 _aFunctional Analysis.
700 1 _aKita, Michitake.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9784431539124
830 0 _aSpringer Monographs in Mathematics,
_x1439-7382
856 4 0 _uhttp://dx.doi.org/10.1007/978-4-431-53938-4
912 _aZDB-2-SMA
999 _c108809
_d108809