000 03807nam a22005175i 4500
001 978-1-4614-0833-8
003 DE-He213
005 20140220083733.0
007 cr nn 008mamaa
008 110907s2011 xxu| s |||| 0|eng d
020 _a9781461408338
_9978-1-4614-0833-8
024 7 _a10.1007/978-1-4614-0833-8
_2doi
050 4 _aQC350-467
050 4 _aTA1501-1820
050 4 _aQC392-449.5
050 4 _aTA1750-1750.22
072 7 _aTTB
_2bicssc
072 7 _aPHJ
_2bicssc
072 7 _aTEC030000
_2bisacsh
082 0 4 _a621.36
_223
100 1 _aZalevsky, Zeev.
_eeditor.
245 1 0 _aSuper-Resolved Imaging
_h[electronic resource] :
_bGeometrical and Diffraction Approaches /
_cedited by Zeev Zalevsky.
250 _a1.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _aXVI, 116p. 65 illus., 21 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Physics
505 0 _aPreface -- Contents -- Chapter One -- 1.1 Fourier Optics -- 1.1.1 Free Space propagation: Fresnel & Fraunhofer integrals -- 1.1.2 Imaging system -- 1.2: Diffraction Resolution limitation -- 1.3: Geometrical Resolution limitation -- The effects of sampling by CCD (pixel shape & aliasing) -- 1.4 Super-resolution explained by Degrees of freedom number -- 1.5 Inverse problem statement of super-resolution -- References -- Chapter 2 -- 2.1 Single snap-shot double field optical zoom -- 2.1.1 Introduction -- 2.1.2 Theory -- 2.1.3. Simulation Investigation -- 2.2 Full Field of View Super-resolution Imaging based on Two Static Gratings and White Light Illumination -- 2.2.1 Introduction -- 2.2.2 Mathematical Analysis -- 2.2.3 Experimental Results -- 2.3 Super-resolution using gray level coding -- 2.3.1 Introduction -- 2.3.2 Theory -- 2.3.3 Experiment -- References -- Chapter 3 -- 3.1 Geometrical Super Resolution Using Code Division Multiplexing -- 3.1.1 Introduction -- 3.1.2 Theoretical Analysis -- 3.1.3 Computer Simulations -- 3.1.4 Experimental Results -- 3.2 Diffraction Super Resolution Using Code Division Multiplexing -- 3.2.1 Introduction -- 3.2.2 Theoretical Analysis -- 3.2.3 Computer Simulations -- 3.2.4 Experimental Results -- References -- Chapter 4 -- 4.1 Geometrical Super Resolved Imaging Using Non periodic Spatial Masking -- 4.1.1 Introduction -- 4.1.2 Theoretical Analysis -- 4.1.3 Experimental investigation -- 4.2 Random angular coding for super-resolved imaging -- 4.2.1 Introduction -- 4.2.2 Mathematical Derivation -- 4.2.3. Numerical Simulation of the System -- 4.2.4. Experimental results -- References.
520 _aIn this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.
650 0 _aPhysics.
650 0 _aComputer vision.
650 1 4 _aPhysics.
650 2 4 _aOptics, Optoelectronics, Plasmonics and Optical Devices.
650 2 4 _aSignal, Image and Speech Processing.
650 2 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461408321
830 0 _aSpringerBriefs in Physics
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-0833-8
912 _aZDB-2-PHA
999 _c106271
_d106271