000 03524nam a22005415i 4500
001 978-3-642-24609-8
003 DE-He213
005 20140220083303.0
007 cr nn 008mamaa
008 120207s2012 gw | s |||| 0|eng d
020 _a9783642246098
_9978-3-642-24609-8
024 7 _a10.1007/978-3-642-24609-8
_2doi
050 4 _aTA342-343
072 7 _aPBWH
_2bicssc
072 7 _aTBJ
_2bicssc
072 7 _aMAT003000
_2bisacsh
072 7 _aTEC009060
_2bisacsh
082 0 4 _a003.3
_223
100 1 _aFrémond, Michel.
_eauthor.
245 1 0 _aPhase Change in Mechanics
_h[electronic resource] /
_cby Michel Frémond.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2012.
300 _aXIII, 303p. 66 illus., 36 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v13
505 0 _a1 Introduction -- 2 The State Quantities and the Quantities Describing the Evolution -- 3 The Basic Laws of Mechanics -- 4 Solid-liquid Phase Change -- 5 Shape Memory Alloys -- 6 Damage -- 7 Contact with Adhesion -- 8 Damage of Solids Glued on One Another. Coupling of Volume and Surface Damages -- 9 Phase Change with Discontinuity of Temperature: Warm Water in Contact with Cold Ice -- 10 Phase Change and Collisions -- 11 Collisions of Deformable Bodies and Phase Change -- 12 Phase Change Depending on a State Quantity: Liquid-vapor Phase Change -- 13 Clouds: Mixture of Air, Vapor and Liquid Water -- 14 Conclusion.
520 _aPredictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.
650 0 _aMathematics.
650 0 _aMeteorology.
650 0 _aMaterials.
650 0 _aEnvironmental protection.
650 1 4 _aMathematics.
650 2 4 _aMathematical Modeling and Industrial Mathematics.
650 2 4 _aPhase Transitions and Multiphase Systems.
650 2 4 _aContinuum Mechanics and Mechanics of Materials.
650 2 4 _aMeteorology/Climatology.
650 2 4 _aStructural Materials.
650 2 4 _aAtmospheric Protection/Air Quality Control/Air Pollution.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642246081
830 0 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v13
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-24609-8
912 _aZDB-2-SMA
999 _c102306
_d102306