000 03798nam a22005055i 4500
001 978-3-642-23647-1
003 DE-He213
005 20140220083302.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 _a9783642236471
_9978-3-642-23647-1
024 7 _a10.1007/978-3-642-23647-1
_2doi
050 4 _aQA331.7
072 7 _aPBKD
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.94
_223
100 1 _aNémethi, András.
_eauthor.
245 1 0 _aMilnor Fiber Boundary of a Non-isolated Surface Singularity
_h[electronic resource] /
_cby András Némethi, Ágnes Szilárd.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2012.
300 _aXII, 240p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2037
505 0 _a1 Introduction -- 2 The topology of a hypersurface germ f in three variables Milnor fiber -- 3 The topology of a pair (f ; g) -- 4 Plumbing graphs and oriented plumbed 3-manifolds -- 5 Cyclic coverings of graphs -- 6 The graph GC of a pair (f ; g). The definition -- 7 The graph GC . Properties -- 8 Examples. Homogeneous singularities -- 9 Examples. Families associated with plane curve singularities -- 10 The Main Algorithm -- 11 Proof of the Main Algorithm -- 12 The Collapsing Main Algorithm -- 13 Vertical/horizontal monodromies -- 14 The algebraic monodromy of H1(¶ F). Starting point -- 15 The ranks of H1(¶ F) and H1(¶ F nVg) via plumbing -- 16 The characteristic polynomial of ¶ F via P# and P# -- 18 The mixed Hodge structure of H1(¶ F) -- 19 Homogeneous singularities -- 20 Cylinders of plane curve singularities: f = f 0(x;y) -- 21 Germs f of type z f 0(x;y) -- 22 The T;;–family -- 23 Germs f of type ˜ f (xayb; z). Suspensions -- 24 Peculiar structures on ¶ F. Topics for future research -- 25 List of examples -- 26 List of notations.
520 _aIn the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aDifferential equations, partial.
650 0 _aAlgebraic topology.
650 1 4 _aMathematics.
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aAlgebraic Topology.
700 1 _aSzilárd, Ágnes.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642236464
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2037
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-23647-1
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c102205
_d102205