Normal view MARC view ISBD view

Computational Characterisation of Gold Nanocluster Structures [electronic resource] / by Andrew James Logsdail.

By: Logsdail, Andrew James [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Theses, Recognizing Outstanding Ph.D. Research: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2013Description: XVI, 209 p. 99 illus., 84 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319014937.Subject(s): Chemistry | Catalysis | Nanochemistry | Chemistry | Theoretical and Computational Chemistry | Nanochemistry | CatalysisDDC classification: 541.2 Online resources: Click here to access online
Contents:
From the Contents: Calculating the Structural Preference of High Symmetry Clusters for PdN, AuN, and (PdAu)N -- Method Development for comparing Scanning Transmission Electron Microscope Images to Theoretical Structures -- A First-Principles Study of the Soft-landing of Au16 on Graphite.
In: Springer eBooksSummary: In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

From the Contents: Calculating the Structural Preference of High Symmetry Clusters for PdN, AuN, and (PdAu)N -- Method Development for comparing Scanning Transmission Electron Microscope Images to Theoretical Structures -- A First-Principles Study of the Soft-landing of Au16 on Graphite.

In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue