Normal view MARC view ISBD view

PAMP Signals in Plant Innate Immunity [electronic resource] : Signal Perception and Transduction / by P. Vidhyasekaran.

By: Vidhyasekaran, P [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Signaling and Communication in Plants: 21Publisher: Dordrecht : Springer Netherlands : Imprint: Springer, 2014Description: XVII, 442 p. 52 illus. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9789400774261.Subject(s): Life sciences | Biotechnology | Agriculture | Microbiology | Plant diseases | Plant physiology | Life Sciences | Plant Pathology | Plant Physiology | Microbiology | Biotechnology | AgricultureDDC classification: 571.92 Online resources: Click here to access online
Contents:
1. Introduction -- 2. PAMP signaling in Plant Innate Immunity -- 3. G-proteins as Molecular Switches in Signal Transduction -- 4. Calcium Ion Signaling System: Calcium Signatures and Sensors -- 5. Reactive Oxygen Species and Cognate Redox Signaling System in Plant Innate Immunity -- 6. Nitric oxide Signaling System in Plant Innate Immunity -- 7. Mitogen-activated Protein Kinase Cascades in Plant Innate Immunity -- 8. Phospholipids Signaling System in Plant Innate Immunity -- 9. Protein Phosphorylation and Dephosphorylation in Plant Immune Signaling Systems -- 10. Ubiquitin-Proteasome System-mediated Protein Degradation in Defense Signaling.
In: Springer eBooksSummary: Plant innate immunity is a potential surveillance system of plants and is the first line of defense against invading pathogens. The immune system is a sleeping system in unstressed healthy plants and is activated on perception of the pathogen-associated molecular patterns (PAMP; the pathogen’s signature) of invading pathogens. The PAMP alarm/danger signals are perceived by plant pattern-recognition receptors (PRRs). The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode/interpret signals and initiate defense gene expression. Activation of the ‘sleeping’ plant innate immune system by using different biotechnological tools would suppress the development of a wide range of plant pathogens in economically important crop plants. Enhancement of disease resistance through altered regulation of plant immunity signaling systems would be a durable and publicly acceptable technology in plant disease management. This book describes the most fascinating PAMP-PRR signaling complex and signal transduction systems. It also discusses the highly complex networks of signaling pathways involved in transmission of the signals to induce distinctly different defense-related genes to mount offence against different biotrophic, hemibiotrophic, and necrotrophic pathogens.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1. Introduction -- 2. PAMP signaling in Plant Innate Immunity -- 3. G-proteins as Molecular Switches in Signal Transduction -- 4. Calcium Ion Signaling System: Calcium Signatures and Sensors -- 5. Reactive Oxygen Species and Cognate Redox Signaling System in Plant Innate Immunity -- 6. Nitric oxide Signaling System in Plant Innate Immunity -- 7. Mitogen-activated Protein Kinase Cascades in Plant Innate Immunity -- 8. Phospholipids Signaling System in Plant Innate Immunity -- 9. Protein Phosphorylation and Dephosphorylation in Plant Immune Signaling Systems -- 10. Ubiquitin-Proteasome System-mediated Protein Degradation in Defense Signaling.

Plant innate immunity is a potential surveillance system of plants and is the first line of defense against invading pathogens. The immune system is a sleeping system in unstressed healthy plants and is activated on perception of the pathogen-associated molecular patterns (PAMP; the pathogen’s signature) of invading pathogens. The PAMP alarm/danger signals are perceived by plant pattern-recognition receptors (PRRs). The plant immune system uses several second messengers to encode information generated by the PAMPs and deliver the information downstream of PRRs to proteins which decode/interpret signals and initiate defense gene expression. Activation of the ‘sleeping’ plant innate immune system by using different biotechnological tools would suppress the development of a wide range of plant pathogens in economically important crop plants. Enhancement of disease resistance through altered regulation of plant immunity signaling systems would be a durable and publicly acceptable technology in plant disease management. This book describes the most fascinating PAMP-PRR signaling complex and signal transduction systems. It also discusses the highly complex networks of signaling pathways involved in transmission of the signals to induce distinctly different defense-related genes to mount offence against different biotrophic, hemibiotrophic, and necrotrophic pathogens.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue