Normal view MARC view ISBD view

Physics of Quantum Rings [electronic resource] / edited by Vladimir M. Fomin.

By: Fomin, Vladimir M [editor.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: NanoScience and Technology: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014Description: XXIV, 487 p. 257 illus., 93 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642391972.Subject(s): Physics | Magnetism | Engineering | Optical materials | Physics | Nanoscale Science and Technology | Quantum Information Technology, Spintronics | Optical and Electronic Materials | Magnetism, Magnetic Materials | Nanotechnology and Microengineering | Spectroscopy and MicroscopyDDC classification: 620.5 Online resources: Click here to access online
Contents:
Preface -- Quantum Ring: A Unique Playground for the Quantum-Mechanical Paradigm -- Fabrication, Characterization and Physical Properties -- Growth and Spectroscopy of Semiconductor Quantum Rings -- Quantum Rings: Fabrication and Optical Properties -- Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling -- Scanning-probe Electronic Imaging of Lithographically Patterned Quantum Rings -- Self-organized Formation and XSTM-Characterization of GaSb/GaAs Quantum Rings -- Self-assembled Semiconductor Quantum Rings Complexes by Droplet Epitaxy: Growth and Physical Properties -- Aharonov-Bohm Effect for Excitons -- New Versions of the Aharonov-Bohm Effect in Quantum Rings -- Aharonov-Bohm Effect for Neutral Exctions in Quantum Rings -- Optical Aharonov-Bohm Effect in Type-II Quantum Dots -- Theory -- Strained Quantum Rings -- Theoretical Modeling of Electronic and Optical Properties of Semiconductor Quantum Rings -- Coulomb Interaction in Finite-Width Quantum Rings. Differential Geometry Applied to Rings and Möbius Nanostructures -- Hole Mixing in Semiconductor Quantum Rings -- Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures.
In: Springer eBooksSummary: This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. 
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Preface -- Quantum Ring: A Unique Playground for the Quantum-Mechanical Paradigm -- Fabrication, Characterization and Physical Properties -- Growth and Spectroscopy of Semiconductor Quantum Rings -- Quantum Rings: Fabrication and Optical Properties -- Self-organized Quantum Rings: Physical Characterization and Theoretical Modeling -- Scanning-probe Electronic Imaging of Lithographically Patterned Quantum Rings -- Self-organized Formation and XSTM-Characterization of GaSb/GaAs Quantum Rings -- Self-assembled Semiconductor Quantum Rings Complexes by Droplet Epitaxy: Growth and Physical Properties -- Aharonov-Bohm Effect for Excitons -- New Versions of the Aharonov-Bohm Effect in Quantum Rings -- Aharonov-Bohm Effect for Neutral Exctions in Quantum Rings -- Optical Aharonov-Bohm Effect in Type-II Quantum Dots -- Theory -- Strained Quantum Rings -- Theoretical Modeling of Electronic and Optical Properties of Semiconductor Quantum Rings -- Coulomb Interaction in Finite-Width Quantum Rings. Differential Geometry Applied to Rings and Möbius Nanostructures -- Hole Mixing in Semiconductor Quantum Rings -- Engineering of Electron States and Spin Relaxation in Quantum Rings and Quantum Dot-Ring Nanostructures.

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. 

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue