Normal view MARC view ISBD view

International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) [electronic resource] / edited by Visarath In, Antonio Palacios, Patrick Longhini.

By: In, Visarath [editor.].
Contributor(s): Palacios, Antonio [editor.] | Longhini, Patrick [editor.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Understanding Complex Systems: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XI, 341 p. 152 illus., 22 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319029252.Subject(s): Engineering | Physics | Engineering | Complexity | Nonlinear Dynamics | Complex Networks | Complex SystemsDDC classification: 620 Online resources: Click here to access online
Contents:
Effect of voltage oscillations on response -- Properties in a model of sensory hair cell -- Enhancing signal resolution in a noisy nonlinear sensor via biomimetic processing.
In: Springer eBooksSummary: A collection of different lectures presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena.   Representative examples of topics covered include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, stochastic resonance, nano-oscillators for generating microwave signals and related complex systems. A common theme among these and many other related lectures is to model, study, understand, and exploit the rich behavior exhibited by nonlinear systems to design and fabricate novel technologies with superior characteristics. Consider, for instance, the fact that a shark’s sensitivity to electric fields is 400 times more powerful than the most sophisticated electric-field sensor. In spite of significant advances in material properties, in many cases it remains a daunting task to duplicate the superior signal processing capabilities of most animals. Since nonlinear systems tend to be highly sensitive to perturbations when they occur near the onset of a bifurcation, there are also lectures on the general topic of bifurcation theory and on how to exploit such bifurcations for signal enhancements purposes. This manuscript will appeal to researchers interested in both theory and implementations of nonlinear systems.  
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Effect of voltage oscillations on response -- Properties in a model of sensory hair cell -- Enhancing signal resolution in a noisy nonlinear sensor via biomimetic processing.

A collection of different lectures presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena.   Representative examples of topics covered include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, stochastic resonance, nano-oscillators for generating microwave signals and related complex systems. A common theme among these and many other related lectures is to model, study, understand, and exploit the rich behavior exhibited by nonlinear systems to design and fabricate novel technologies with superior characteristics. Consider, for instance, the fact that a shark’s sensitivity to electric fields is 400 times more powerful than the most sophisticated electric-field sensor. In spite of significant advances in material properties, in many cases it remains a daunting task to duplicate the superior signal processing capabilities of most animals. Since nonlinear systems tend to be highly sensitive to perturbations when they occur near the onset of a bifurcation, there are also lectures on the general topic of bifurcation theory and on how to exploit such bifurcations for signal enhancements purposes. This manuscript will appeal to researchers interested in both theory and implementations of nonlinear systems.  

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue