Normal view MARC view ISBD view

Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies [electronic resource] / by Michael Fulde.

By: Fulde, Michael [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Springer Series in Advanced Microelectronics: 28Publisher: Dordrecht : Springer Netherlands, 2010Description: X, 127p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9789048132805.Subject(s): Engineering | Systems engineering | Optical materials | Engineering | Circuits and Systems | Optical and Electronic MaterialsDDC classification: 621.3815 Online resources: Click here to access online
Contents:
Analog Properties of Multi-Gate MOSFETs -- High-k Related Design Issues -- Multi-Gate Related Design Aspects -- Multi-Gate Tunneling FETs -- Conclusions and Outlook.
In: Springer eBooksSummary: Since scaling of CMOS is reaching the nanometer area serious limitations enforce the introduction of novel materials, device architectures and device concepts. Multi-gate devices employing high-k gate dielectrics are considered as promising solution overcoming these scaling limitations of conventional planar bulk CMOS. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies provides a technology oriented assessment of analog and mixed-signal circuits in emerging high-k and multi-gate CMOS technologies. Closing the gap from technology to design a detailed insight into circuit performance trade-offs related to multi-gate and high-k device specifics is provided. The new effect of transient threshold voltage variations is described with an equivalent model that allows a systematic assessment of the consequences on circuit level and the development of countermeasures to compensate for performance degradation in comparators and A/D converters. Key analog, mixed-signal and RF building blocks are realized in high-k multi-gate technology and benchmarked against planar bulk. Performance and area benefits, enabled by advantageous multi-gate device properties are analytically and experimentally quantified for reference circuits, operational amplifiers and D/A converters. This is based on first time silicon investigations of complex mixed-signal building blocks as D/A converter and PLL with multi-gate devices. As another first, the integration of tunnel transistors in a multi-gate process is described, enabling devices with promising scaling and analog properties. Based on these devices a novel reference circuit is proposed which features low power consumption.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Analog Properties of Multi-Gate MOSFETs -- High-k Related Design Issues -- Multi-Gate Related Design Aspects -- Multi-Gate Tunneling FETs -- Conclusions and Outlook.

Since scaling of CMOS is reaching the nanometer area serious limitations enforce the introduction of novel materials, device architectures and device concepts. Multi-gate devices employing high-k gate dielectrics are considered as promising solution overcoming these scaling limitations of conventional planar bulk CMOS. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies provides a technology oriented assessment of analog and mixed-signal circuits in emerging high-k and multi-gate CMOS technologies. Closing the gap from technology to design a detailed insight into circuit performance trade-offs related to multi-gate and high-k device specifics is provided. The new effect of transient threshold voltage variations is described with an equivalent model that allows a systematic assessment of the consequences on circuit level and the development of countermeasures to compensate for performance degradation in comparators and A/D converters. Key analog, mixed-signal and RF building blocks are realized in high-k multi-gate technology and benchmarked against planar bulk. Performance and area benefits, enabled by advantageous multi-gate device properties are analytically and experimentally quantified for reference circuits, operational amplifiers and D/A converters. This is based on first time silicon investigations of complex mixed-signal building blocks as D/A converter and PLL with multi-gate devices. As another first, the integration of tunnel transistors in a multi-gate process is described, enabling devices with promising scaling and analog properties. Based on these devices a novel reference circuit is proposed which features low power consumption.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue