Normal view MARC view ISBD view

The CMS Silicon Strip Tracker [electronic resource] : Concept, Production, and Commissioning / by Oliver Pooth.

By: Pooth, Oliver [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookPublisher: Wiesbaden : Vieweg+Teubner, 2010Description: 152p. 109 illus., 6 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783834896391.Subject(s): Physics | Physics | Physics, generalDDC classification: 530 Online resources: Click here to access online In: Springer eBooksSummary: With the start of the Large Hadron Collider LHC at CERN near Geneva, Switzerland, and the huge detectors along this particle accelerator, the largest high energy physics experiments ever are underway. One of the experiments is the CMS detector (Compact Muon Solenoid). With this experiment over 3,000 scientists and engineers worldwide will search for answers to fundamental questions in high energy physics. Oliver Pooth describes the silicon strip tracker of the CMS detector. With a sensitive silicon area of 200 m² it is a central part of the experiment and able to precisely measure charged particles originating from high energy proton collisions at the LHC. In total, more than 15,000 individual silicon strip detector modules were built and tested before they were integrated on larger substructures of the silicon strip tracker. The author discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector modules which were built and tested in various places worldwide. After integration into the CMS experiment and commissioning, the silicon strip tracker is now ready to operate for at least ten years of LHC running.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

With the start of the Large Hadron Collider LHC at CERN near Geneva, Switzerland, and the huge detectors along this particle accelerator, the largest high energy physics experiments ever are underway. One of the experiments is the CMS detector (Compact Muon Solenoid). With this experiment over 3,000 scientists and engineers worldwide will search for answers to fundamental questions in high energy physics. Oliver Pooth describes the silicon strip tracker of the CMS detector. With a sensitive silicon area of 200 m² it is a central part of the experiment and able to precisely measure charged particles originating from high energy proton collisions at the LHC. In total, more than 15,000 individual silicon strip detector modules were built and tested before they were integrated on larger substructures of the silicon strip tracker. The author discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector modules which were built and tested in various places worldwide. After integration into the CMS experiment and commissioning, the silicon strip tracker is now ready to operate for at least ten years of LHC running.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue