Normal view MARC view ISBD view

Theory of Charge Transport in Carbon Electronic Materials [electronic resource] / by Zhigang Shuai, Linjun Wang, Chenchen Song.

By: Shuai, Zhigang [author.].
Contributor(s): Wang, Linjun [author.] | Song, Chenchen [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: SpringerBriefs in Molecular Science: Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: IX, 90p. 59 illus., 23 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642250767.Subject(s): Chemistry | Optical materials | Surfaces (Physics) | Chemistry | Theoretical and Computational Chemistry | Optical and Electronic Materials | Semiconductors | Computer Applications in Chemistry | Characterization and Evaluation of MaterialsDDC classification: 541.2 Online resources: Click here to access online
Contents:
Introduction -- Hopping Mechanism -- Polaron Mechanism -- Deformation Potential Theory -- Outlook.
In: Springer eBooksSummary: Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- Hopping Mechanism -- Polaron Mechanism -- Deformation Potential Theory -- Outlook.

Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue