Normal view MARC view ISBD view

Phase Change in Mechanics [electronic resource] / by Michel Frémond.

By: Frémond, Michel [author.].
Contributor(s): SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Lecture Notes of the Unione Matematica Italiana: 13Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: XIII, 303p. 66 illus., 36 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783642246098.Subject(s): Mathematics | Meteorology | Materials | Environmental protection | Mathematics | Mathematical Modeling and Industrial Mathematics | Phase Transitions and Multiphase Systems | Continuum Mechanics and Mechanics of Materials | Meteorology/Climatology | Structural Materials | Atmospheric Protection/Air Quality Control/Air PollutionDDC classification: 003.3 Online resources: Click here to access online
Contents:
1 Introduction -- 2 The State Quantities and the Quantities Describing the Evolution -- 3 The Basic Laws of Mechanics -- 4 Solid-liquid Phase Change -- 5 Shape Memory Alloys -- 6 Damage -- 7 Contact with Adhesion -- 8 Damage of Solids Glued on One Another. Coupling of Volume and Surface Damages -- 9 Phase Change with Discontinuity of Temperature: Warm Water in Contact with Cold Ice -- 10 Phase Change and Collisions -- 11 Collisions of Deformable Bodies and Phase Change -- 12 Phase Change Depending on a State Quantity: Liquid-vapor Phase Change -- 13 Clouds: Mixture of Air, Vapor and Liquid Water -- 14 Conclusion.
In: Springer eBooksSummary: Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

1 Introduction -- 2 The State Quantities and the Quantities Describing the Evolution -- 3 The Basic Laws of Mechanics -- 4 Solid-liquid Phase Change -- 5 Shape Memory Alloys -- 6 Damage -- 7 Contact with Adhesion -- 8 Damage of Solids Glued on One Another. Coupling of Volume and Surface Damages -- 9 Phase Change with Discontinuity of Temperature: Warm Water in Contact with Cold Ice -- 10 Phase Change and Collisions -- 11 Collisions of Deformable Bodies and Phase Change -- 12 Phase Change Depending on a State Quantity: Liquid-vapor Phase Change -- 13 Clouds: Mixture of Air, Vapor and Liquid Water -- 14 Conclusion.

Predictive theories of phenomena involving phase change with applications in engineering are investigated in this volume, e.g. solid-liquid phase change, volume and surface damage, and phase change involving temperature discontinuities. Many other phase change phenomena such as solid-solid phase change in shape memory alloys and vapor-liquid phase change are also explored. Modeling is based on continuum thermo-mechanics. This involves a renewed principle of virtual power introducing the power of the microscopic motions responsible for phase change. This improvement yields a new equation of motion related to microscopic motions, beyond the classical equation of motion for macroscopic motions. The new theory sensibly improves the phase change modeling. For example, when warm rain falls on frozen soil, the dangerous black ice phenomenon can be comprehensively predicted. In addition, novel equations predict the evolution of clouds, which are themselves a mixture of air, liquid water and vapor.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue